Corrupted and occluded face recognition via cooperative sparse representation
نویسندگان
چکیده
منابع مشابه
Corrupted and occluded face recognition via cooperative sparse representation
In image classification, can sparse representation (SR) associate one test image with all training ones from the correct class, but not associate with any training ones from the incorrect classes? The backward sparse representation (bSR) which contains complementary information in an opposite direction can remedy the imperfect associations discovered by the general forward sparse representation...
متن کاملRobust Face Recognition via Sparse Representation
In this project, we implement a robust face recognition system via sparse representation and convex optimization. We treat each test sample as sparse linear combination of training samples, and get the sparse solution via L1-minimization. We also explore the group sparseness (L2-norm) as well as normal L1-norm regularization.We discuss the role of feature extraction and classification robustnes...
متن کاملFace Recognition Using Sparse Representation
Many classic and contemporary face recognition algorithms work well on public data sets, but degrade sharply when they are used in a real recognition system. This is mostly due to the difficulty of simultaneously handling variations in illumination, image misalignment, and occlusion in the test image. We consider a scenario where the training images are well controlled and test images are only ...
متن کاملSparse Representation for Face Recognition
Sparse representation has attracted a great deal of attention in the past decade. Famous transforms such as discrete Fourier transform, wavelet transform and singular value decomposition are used to sparsely represent the signals. The aim of these transforms is to reveal certain structures of a signal and representation of these structures in a compact form. Therefore, sparse representation pro...
متن کاملRobust face recognition via low-rank sparse representation-based classification
Face recognition has attracted great interest due to its importance in many real-world applications. In this paper, we present a novel low-rank sparse representation-based classification (LRSRC) method for robust face recognition. Given a set of test samples, LRSRC seeks the lowest-rank and sparsest representation matrix over all training samples. Since low-rank model can reveal the subspace st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2016
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2016.02.016